问答社区
360智脑官网 360Zhinao-7B-Chat-360K 镜像体验更多更强大的功能
模型介绍
🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型:
- 360Zhinao-7B-Base
- 360Zhinao-7B-Chat-4K
- 360Zhinao-7B-Chat-32K
- 360Zhinao-7B-Chat-360K
360智脑大模型特点如下:
- 基础模型:采用 3.4 万亿 Tokens 的高质量语料库训练,以中文、英文、代码为主,在相关基准评测中,同尺寸有竞争力。
- 对话模型:具有强大的对话能力,开放4K、32K、360K三种不同文本长度。据了解,360K(约50万字)是当前国产开源模型文本长度最长的。
更新信息
- [2024.04.12] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
目录
下载地址
本次发布版本和下载链接见下表:
Size | Model | BF16 | Int4 |
---|---|---|---|
7B | 360Zhinao-7B-Base | 🤖 🤗 | |
7B | 360Zhinao-7B-Chat-4K | 🤖 🤗 | 🤖 🤗 |
7B | 360Zhinao-7B-Chat-32K | 🤖 🤗 | 🤖 🤗 |
7B | 360Zhinao-7B-Chat-360K | 🤖 🤗 | 🤖 🤗 |
模型评估
基础模型
我们在OpenCompass的主流评测数据集上验证了我们的模型性能,包括C-Eval、AGIEval、MMLU、CMMLU、HellaSwag、MATH、GSM8K、HumanEval、MBPP、BBH、LAMBADA,考察的能力包括自然语言理解、知识、数学计算和推理、代码生成、逻辑推理等。
Model
|
AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Baichuan2-7B | 41.49 | 56.3 | 34.6 | 54.7 | 57 | 67 | 5.4 | 24.6 | 17.7 | 24 | 41.8 | 73.3 |
Baichuan-7B | 31.94 | 44.7 | 24.6 | 41.5 | 44.6 | 68.4 | 2.5 | 9.6 | 9.1 | 6.4 | 32.8 | 67.1 |
ChatGLM3-6B | 58.67 | 67 | 47.4 | 62.8 | 66.5 | 76.5 | 19.2 | 61 | 44.5 | 57.2 | 66.2 | 77.1 |
DeepSeek-7B | 39.8 | 45 | 24 | 49.3 | 46.8 | 73.4 | 4.2 | 18.3 | 25 | 36.4 | 42.8 | 72.6 |
InternLM2-7B | 58.01 | 65.7 | 50.2 | 65.5 | 66.2 | 79.6 | 19.9 | 70.6 | 41.5 | 42.4 | 64.4 | 72.1 |
InternLM-7B | 39.33 | 53.4 | 36.9 | 51 | 51.8 | 70.6 | 6.3 | 31.2 | 13.4 | 14 | 37 | 67 |
LLaMA-2-7B | 33.27 | 32.5 | 21.8 | 46.8 | 31.8 | 74 | 3.3 | 16.7 | 12.8 | 14.8 | 38.2 | 73.3 |
LLaMA-7B | 30.35 | 27.3 | 20.6 | 35.6 | 26.8 | 74.3 | 2.9 | 10 | 12.8 | 16.8 | 33.5 | 73.3 |
Mistral-7B-v0.1 | 47.67 | 47.4 | 32.8 | 64.1 | 44.7 | 78.9 | 11.3 | 47.5 | 27.4 | 38.6 | 56.7 | 75 |
MPT-7B | 30.06 | 23.5 | 21.3 | 27.5 | 25.9 | 75 | 2.9 | 9.1 | 17.1 | 22.8 | 35.6 | 70 |
Qwen1.5-7B | 55.12 | 73.57 | 50.8 | 62.15 | 71.84 | 72.62 | 20.36 | 54.36 | 53.05 | 36.8 | 40.01 | 70.74 |
Qwen-7B | 49.53 | 63.4 | 45.3 | 59.7 | 62.5 | 75 | 13.3 | 54.1 | 27.4 | 31.4 | 45.2 | 67.5 |
XVERSE-7B | 34.27 | 61.1 | 39 | 58.4 | 60.8 | 73.7 | 2.2 | 11.7 | 4.9 | 10.2 | 31 | 24 |
Yi-6B | 47.8 | 73 | 44.3 | 64 | 73.5 | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 |
360Zhinao-7B | 56.15 | 74.11 | 49.49 | 67.44 | 72.38 | 83.05 | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | 78.59 |
以上结果,在官方Opencompass上可查询或可复现。
Chat模型
4K和32K的Chat模型使用相同的4K SFT数据训练。
我们采用了两阶段的方式训练长文本模型.
第一阶段:我们增大RoPE base,将上下文长度扩展至32K训练:
- 首先,对基础模型进行了约5B tokens的32K窗口继续预训练。
- 接着,SFT阶段使用了多种形式和来源的长文本数据,包括高质量的人工标注32K长文本数据。
第二阶段:我们将上下文长度扩展至360K进行训练,使用数据如下:
- 少量高质量人工标注数据。
- 由于带有标注的超长文本数据的稀缺性,我们构造了多种形式的合成数据:
- 多文档问答:类似Ziya-Reader,我们基于360自有数据构造了多种类型的多文档问答数据,同时将问答改为多轮,显著提升长文本的训练效率。
- 单文档问答:类似LLama2 Long,我们构造了基于超长文本各个片段的多轮问答数据。
我们在多种长度和多种任务的评测Benchmark上验证不同版本模型的性能。
-
360Zhinao-7B-Chat-32K模型长文本能力评测
我们使用LongBench验证长文本效果。LongBench是第一个多任务、中英双语、针对大语言模型长文本理解能力的评测基准。LongBench由六大类、二十一个不同的任务组成,我们选择其中与中文长文本应用最密切相关的中文单文档问答、多文档问答、摘要、Few-shot等任务进行评测。
Model Avg 单文档QA 多文档QA 摘要 Few-shot学习 代码补全 GPT-3.5-Turbo-16k 37.84 61.2 28.7 16 29.2 54.1 ChatGLM2-6B-32k 37.16 51.6 37.6 16.2 27.7 52.7 ChatGLM3-6B-32k 44.62 62.3 44.8 17.8 42 56.2 InternLM2-Chat-7B 42.20 56.65 29.15 17.99 43.5 63.72 Qwen1.5-Chat-7B 36.75 52.85 30.08 14.28 32 54.55 Qwen1.5-Chat-14B 39.80 60.39 27.99 14.77 37 58.87 360Zhinao-7B-Chat-32K 45.18 57.18 48.06 15.03 44 61.64 -
360Zhinao-7B-Chat-360K“大海捞针”测试
大海捞针测试(NeedleInAHaystack)是将关键信息插入一段长文本的不同位置,再对该关键信息提问,从而测试大模型的长文本能力的一种方法。
360Zhinao-7B-Chat-360K在中英文大海捞针中都能达到98%以上的准确率。
-
快速开始
简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao-7B-Base和360Zhinao-7B-Chat
依赖安装
- python 3.8 and above
- pytorch 2.0 and above
- transformers 4.37.2 and above
- CUDA 11.4 and above are recommended.
pip install -r requirements.txt
我们推荐安装flash-attention(当前已支持flash attention 2)来提高你的运行效率以及降低显存占用。(flash-attention只是可选项,不安装也可正常运行该项目)
flash-attn >= 2.3.6
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
🤗 Transformers
Base模型推理
此代码演示使用transformers快速使用360Zhinao-7B-Base模型进行推理
from transformers import AutoTokenizer, AutoModelForCausalLM from transformers.generation import GenerationConfig MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base" tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME_OR_PATH, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME_OR_PATH, device_map="auto", trust_remote_code=True) generation_config = GenerationConfig.from_pretrained( MODEL_NAME_OR_PATH, trust_remote_code=True) inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config) print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
Chat模型推理
此代码演示使用transformers快速使用360Zhinao-7B-Chat-4K模型进行推理
from transformers import AutoTokenizer, AutoModelForCausalLM from transformers.generation import GenerationConfig MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K" tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME_OR_PATH, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME_OR_PATH, device_map="auto", trust_remote_code=True) generation_config = GenerationConfig.from_pretrained( MODEL_NAME_OR_PATH, trust_remote_code=True) messages = [] #round-1 messages.append({"role": "user", "content": "介绍一下刘德华"}) response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config) messages.append({"role": "assistant", "content": response}) print(messages) #round-2 messages.append({"role": "user", "content": "他有什么代表作?"}) response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config) messages.append({"role": "assistant", "content": response}) print(messages)
🤖 ModelScope
Base模型推理
此代码演示使用ModelScope快速使用360Zhinao-7B-Base模型进行推理
from modelscope import AutoModelForCausalLM, AutoTokenizer from modelscope import GenerationConfig MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base" tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME_OR_PATH, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME_OR_PATH, device_map="auto", trust_remote_code=True) generation_config = GenerationConfig.from_pretrained( MODEL_NAME_OR_PATH, trust_remote_code=True) inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config) print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
Chat模型推理
此代码演示使用ModelScope快速使用360Zhinao-7B-Chat-4K模型进行推理
from modelscope import AutoModelForCausalLM, AutoTokenizer from modelscope import GenerationConfig MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K" tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME_OR_PATH, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME_OR_PATH, device_map="auto", trust_remote_code=True) generation_config = GenerationConfig.from_pretrained( MODEL_NAME_OR_PATH, trust_remote_code=True) messages = [] #round-1 messages.append({"role": "user", "content": "介绍一下刘德华"}) response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config) messages.append({"role": "assistant", "content": response}) print(messages) #round-2 messages.append({"role": "user", "content": "他有什么代表作?"}) response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config) messages.append({"role": "assistant", "content": response}) print(messages)
终端 Demo
可使用终端交互实现快速体验
python cli_demo.py
注:我们尚未支持Mac上
device = 'mps'
。网页 Demo
也可使用网页交互实现快速体验
streamlit run web_demo.py
API Demo
启动命令
python openai_api.py
请求参数
curl 'http://localhost:8360/v1/chat/completions' \ -H 'Content-Type: application/json' \ -d '{ "max_new_tokens": 200, "do_sample": true, "top_k": 0, "top_p": 0.8, "temperature": 1.0, "repetition_penalty": 1.0, "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "你好"} ] }'
模型推理
模型量化
我们提供了基于AutoGPTQ的量化方案,并开源了Int4量化模型。
模型部署
vLLM安装环境
如希望部署及加速推理,我们建议你使用
vLLM==0.3.3
。如果你使用CUDA 12.1和PyTorch 2.1,可以直接使用以下命令安装vLLM。
pip install vllm==0.3.3
否则请参考vLLM官方的安装说明。
安装完成后,还需要以下操作~
- 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。
- 把vllm/serving_chat.py文件复制到env环境对应的vllm/entrypoints/openai目录下。
- 然后在vllm/model_executor/models/__init__.py文件增加一行代码
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
vLLM服务启动
启动服务
python -m vllm.entrypoints.openai.api_server \ --served-model-name 360Zhinao-7B-Chat-4K \ --model qihoo360/360Zhinao-7B-Chat-4K \ --trust-remote-code \ --tensor-parallel-size 1 \ --max-model-len 4096 \ --host 0.0.0.0 \ --port 8360
使用curl请求服务
curl http://localhost:8360/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "360Zhinao-7B-Chat-4K", "max_tokens": 200, "top_k": -1, "top_p": 0.8, "temperature": 1.0, "presence_penalty": 0.0, "frequency_penalty": 0.0, "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "你好"} ], "stop": [ "<eod>", "<|im_end|>", "<|im_start|>" ] }'
使用python请求服务
from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8360/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) chat_response = client.chat.completions.create( model="360Zhinao-7B-Chat-4K", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "你好"}, ], stop=[ "<eod>", "<|im_end|>", "<|im_start|>" ], presence_penalty=0.0, frequency_penalty=0.0 ) print("Chat response:", chat_response)
注意:如需要开启重复惩罚,建议使用 presence_penalty 和 frequency_penalty 参数。
模型微调
训练数据
我们提供了微调训练样例数据 data/test.json,该样例数据是从 multiturn_chat_0.8M 采样出 1 万条,并且做了格式转换。
数据格式:
[ { "id": 1, "conversations": [ { "from": "system", "value": "You are a helpful assistant." }, { "from": "user", "value": "您好啊" }, { "from": "assistant", "value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。" } ] } ]
微调训练
训练脚本如下:
set -x HOSTFILE=hostfile DS_CONFIG=./finetune/ds_config_zero2.json # PARAMS LR=5e-6 EPOCHS=3 MAX_LEN=4096 BATCH_SIZE=4 NUM_NODES=1 NUM_GPUS=8 MASTER_PORT=29500 IS_CONCAT=False # 是否数据拼接到最大长度(MAX_LEN) DATA_PATH="./data/training_data_sample.json" MODEL_PATH="qihoo360/360Zhinao-7B-Base" OUTPUT_DIR="./outputs/" deepspeed --hostfile ${HOSTFILE} \ --master_port ${MASTER_PORT} \ --num_nodes ${NUM_NODES} \ --num_gpus ${NUM_GPUS} \ finetune.py \ --report_to "tensorboard" \ --data_path ${DATA_PATH} \ --model_name_or_path ${MODEL_PATH} \ --output_dir ${OUTPUT_DIR} \ --model_max_length ${MAX_LEN} \ --num_train_epochs ${EPOCHS} \ --per_device_train_batch_size ${BATCH_SIZE} \ --gradient_accumulation_steps 1 \ --save_strategy steps \ --save_steps 200 \ --learning_rate ${LR} \ --lr_scheduler_type cosine \ --adam_beta1 0.9 \ --adam_beta2 0.95 \ --adam_epsilon 1e-8 \ --max_grad_norm 1.0 \ --weight_decay 0.1 \ --warmup_ratio 0.01 \ --gradient_checkpointing True \ --bf16 True \ --tf32 True \ --deepspeed ${DS_CONFIG} \ --is_concat ${IS_CONCAT} \ --logging_steps 1 \ --log_on_each_node False
bash finetune/ds_finetune.sh
- 可通过配置hostfile,实现单机、多机训练。
- 可通过配置ds_config,实现zero2、zero3。
- 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。
- 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。